A non-Hurewicz set of reals of size ∂ with all its powers Menger

Shuguo Zhang joint work with Jialiang He and Jiakui Yu

Department of Mathematics, Sichuan university

Winter School in Abstract Analysis 2018 Section: Set Theory and Topology 2018/01/29

(1). Basic definitions and background

(2). Main results

(3). Application

A B > A B >

Definition (1924)

A set X has the *Menger* property if for each sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of open covers of X there exist finite subsets $\mathcal{V}_n \subset \mathcal{U}_n, n \in \mathbb{N}$, such that the collection $\bigcup \{\mathcal{V}_n : n \in \mathbb{N}\}$ is a cover of X.

Fact

 σ -compact \Rightarrow Menger property \Rightarrow Lindelöff.

Example

 $\mathbb{N}^{\mathbb{N}}$ is a Lindelöff space, and does not satisfy Menger property.

・ 同 ト ・ ヨ ト ・ ヨ ト

Menger's Conjecture: Each separable metric Menger space is σ -compact.

Recall that $X \subset \mathbb{R}$ is a *Lusin* set if it is uncountable, and for every meager set (a union of countably many nowhere dense sets) $A \subset \mathbb{R}, X \cap A$ is countable.

Fact (Mahlo, Lusin)

(CH) There exists a Lusin set in \mathbb{R} .

Theorem (Hurewicz, 1925)

Every Lusin set has Menger property, and is not σ -compact.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Notations:

For $a, b \in \mathbb{N}^{\mathbb{N}}$, denote $a \leq^* b$ if $a(n) \leq b(n)$ for all but finitely many $n. a \not\leq^* b$ is denoted by $b <^{\infty} a$.

 \mathcal{U} is an open cover of X if for every $U \in \mathcal{U}$, U is an open subset of X, and $\bigcup \mathcal{U} = X$, and $X \notin \mathcal{U}$.

 \mathcal{U} is a γ -cover of X if for each $x \in X$, x is contained in all but finitely many elements of \mathcal{U} .

 \mathcal{U} is a ω -cover of X if for each finite $F \subset X$, there exist a $U \in \mathcal{U}$ such that $F \subset U$.

Definition (1925)

A space has Hurewicz property if for each sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of open covers of X there exist finite subsets $\mathcal{V}_n \subset \mathcal{U}_n$, $n \in \mathbb{N}$, such that the collection $\{\cup \mathcal{V}_n : n \in \mathbb{N}\}$ is a γ -cover of X

Fact: σ -compact \Rightarrow *Hurewicz* property \Rightarrow *Menger* property.

Hurewicz's Conjecture: Each separable metric Hurewicz space is σ -compact.

A set $X \subset \mathbb{R}$ is called Sierpiński set if it is uncountable and for every Lebesgue measure zero set $M \subset \mathbb{R}$, $M \cap X$ is countable.

Fact (Sierpiński)

(CH) There exists a Sierpiński set in \mathbb{R} .

Theorem (folklore)

Every Sierpiński set has Hurewicz property, and is not σ -compact.

Notations: $\mathbb{N}^{\uparrow \mathbb{N}}$ stands for all increasing members of $\mathbb{N}^{\mathbb{N}}$.

 $[\mathbb{N}]^{\mathbb{N}}$ stands for all infinite subsets of \mathbb{N} .

Fin stands for all finite subsets of \mathbb{N} .

 $\text{For } a \in [\mathbb{N}]^{\mathbb{N}} \text{, } y \in \mathbb{N}^{\uparrow \mathbb{N}} \text{, denote } y/a = \{n : a \cap [y(n), y(n+1)) \neq \emptyset\}.$

The distinction of σ -compact and Hurewicz property, the distinction of σ -compact and Menger property in ZFC

A \mathfrak{d} -scale is a dominating family $\{s_{\alpha} : \alpha < \mathfrak{d}\} \subseteq [\mathbb{N}]^{\mathbb{N}}$ such that for all $\alpha < \beta < \mathfrak{d}$, $s_{\beta} \not\leq^* s_{\alpha}$; A \mathfrak{b} -scale is a unbounded family $\{b_{\alpha} : \alpha < \mathfrak{b}\} \subseteq [\mathbb{N}]^{\mathbb{N}}$ such that for all $\alpha < \beta < \mathfrak{d}$, $s_{\alpha} \leq^* s_{\beta}$.

Theorem (Bartoszyński-Tsaban, 2006, Proceedings of AMS)

- (1) For each \mathfrak{d} -scale S, $S \bigcup Fin$ has Menger property and is not σ -compact.
- (2) For each b-scale S, $S \bigcup Fin$ has Hurewicz property and is not σ -compact.

伺 ト イヨト イヨト

Definition

Let P be a topological property, let $non(P) = min\{|X|, X \text{ not has property } P\}.$

Lemma (Hurewicz, 1927, Fund. Math)

(1) $non(Menger) = \mathfrak{d}$. (2) $non(Hurewicz) = \mathfrak{b}$.

Theorem (J. Chaber, R. Pol, 2002)

 $(\mathfrak{b} = \mathfrak{d})$ There is a space with size \mathfrak{d} such that X has Menger property and does not satisfies Hurewicz property.

Theorem (Tsaban, Zdomskyy, 2008, JEMS)

There is, in ZFC, a set of reals of cardinality \mathfrak{d} that is Menger but not Hurewicz.

Notations: \mathcal{O} denotes all open covers of X.

 Ω denotes the collection of all $\omega\text{-covers}$ of X.

 Γ denotes the collection of all $\gamma\text{-covers}$ of X.

Definition

 $S_{fin}(\Omega, \Omega)$: For any sequence $\{\mathcal{U}_n : n \in \mathbb{N}\} \subset \Omega$, there is $\mathcal{V}_n \in [\mathcal{U}_n]^{<\mathbb{N}}$ such that $\bigcup \{\mathcal{V}_n : n \in \mathbb{N}\} \in \Omega$.

Notation: $U_{fin}(\mathcal{O}, \Gamma)$ =Hurewicz; $S_{fin}(\Omega, \Omega)$ =Menger.

Theorem (W. Just, A. Miller, M. Scheepers, P. Szeptycki, 1996, Topol Appl)

Let X be a separable metrizable space. Then X is $S_{fin}(\Omega, \Omega)$ if and only if every finite power of X has Menger property. How are $S_{fin}(\Omega, \Omega)$ and $U_{fin}(\mathcal{O}, \Gamma)$ different.

Theorem (Chaber-Pol, 2002)

 $(\mathfrak{b} = \mathfrak{d})$ There is a space with size \mathfrak{d} such that $X \in S_{fin}(\Omega, \Omega) \setminus U_{fin}(\mathcal{O}, \Gamma).$

Theorem (Tsaban, Zdomskyy, 2008, JEMS)

If \mathfrak{d} is regular, then there is a non-Hurewicz set of reals of size \mathfrak{d} with all its powers Menger.

Question (Tsaban, 2009, Contemporary Math)

Is there, in ZFC, a space with size \mathfrak{d} such that $X \in S_{fin}(\Omega, \Omega) \setminus U_{fin}(\mathcal{O}, \Gamma).$

ゆ ト イヨ ト イヨト

Definition

$$X \subseteq \mathbb{N}^{\mathbb{N}}$$
 is called κ -unbounded if for any $g \in \mathbb{N}^{\mathbb{N}}$, $|\{x \in X : x \leq^{*} g\}| < \kappa$.

Notion: $X \subseteq [\mathbb{N}]^{\mathbb{N}}$ is called κ -unbounded if the enumeration of its elements in $\mathbb{N}^{\mathbb{N}}$ is κ -unbounded.

Definition

A set $X \subseteq [\mathbb{N}]^{\mathbb{N}}$ with $|X| \ge \kappa$ is called κ -concentrated if it contains a countable set D such that $|X \setminus U| < \kappa$ for any open U containing D.

- 4 同 6 4 日 6 4 日 6

Lemma (folklore)

Each *∂*-concentrated space has Menger property.

The relation between the κ -concentrated sets and the κ -unbounded sets is as follows.

Lemma (P. Szewczak, B. Tsaban, 2017, Ann Pure and Appl Logic)

Let κ be a infinite cardinal number and $X \subseteq [\mathbb{N}]^{\mathbb{N}}$ with $|X| \geq \kappa$. The set X is κ -unbounded if and only if the set $X \cup Fin$ is κ -concentrated on Fin.

伺 ト イヨト イヨト

Definition

For any $g \in \mathbb{N}^{\mathbb{N}}$, define \tilde{g} as follows. $\tilde{q}(0) = q(0); \ \tilde{q}(n+1) = \tilde{q}(n) + q(\tilde{q}(n)).$

Notation: χ_s stands for the characteristic function of $s, s \in P(\mathbb{N})$.

Definition

For any $s \in [\mathbb{N}]^{\mathbb{N}}$, $f_s(n) = k$ if the length of 0s between the *n*-th '1' and the (n + 1)-th '1' of χ_s is equal to k.

Well-known Fact: The map $s \rightarrow f_s$ is a homeomorphism.

(人間) ト く ヨ ト く ヨ ト

Lemma (J. He, J. Yu, S. Zhang)

Let $a \in [\mathbb{N}]^{\mathbb{N}}$, $g \in \mathbb{N}^{\uparrow \mathbb{N}}$ and a omits an interval I with at least two points from \tilde{g} . Then there exists a $k \in \mathbb{N}$ such that $g(k) < f_a(k)$.

Proof.

Assume that i < j are consecutive elements of $I \cap \tilde{g}$.

Put $k = |a \cap minI|$.

Then $g(k) \le g(i) = j - i < |I| < f_a(k)$.

伺 ト く ヨ ト く ヨ ト

Main results

Lemma (folklore)

Let $Y \subset [\mathbb{N}]^{\mathbb{N}}$ with $|Y| < \mathfrak{d}$. Then there is a $b \in \mathbb{N}^{\uparrow \mathbb{N}}$ such that for each $y \in Y$, the set $\{n : |y \cap (b(n), b(n+1)| \ge 2\}$ is infinite.

Lemma (J. He, J. Yu, S. Zhang)

For any $Y \subseteq \mathbb{N}^{\uparrow \mathbb{N}}$ with $|Y| < \mathfrak{d}$, for any $a \in \mathbb{N}^{\uparrow \mathbb{N}}$. $\exists I \in [\mathbb{N}]^{\mathbb{N}}$ such that $c = \bigcup_{n \in I} [a(n), a(n+1))$ satisfies that $Y <^{\infty} f_c$.

Corollary (J. He, J. Yu, S. Zhang)

For any $Y \subseteq \mathbb{N}^{\uparrow \mathbb{N}}$ with $|Y| < \mathfrak{d}$, for any $g \in \mathbb{N}^{\uparrow \mathbb{N}}$. $\exists s \in [\mathbb{N}]^{\mathbb{N}}$ such that $Y <^{\infty} f_s$ and $g <^{\infty} f_{s^c}$.

< ロ > < 同 > < 回 > < 回 > < □ > <

-

The following is our main result which answers the Tsaban's question mentioned above:

Theorem (J. He, J. Yu, S. Zhang)

In ZFC, there exists a space $X \subset P(\mathbb{N})$ such that (1). $|X| = \mathfrak{d}$ (2). X is not $U_{fin}(\mathcal{O}, \Gamma)$. (3). X^n has $S_{fin}(\mathcal{O}, \mathcal{O})$ for every n.

同 ト イ ヨ ト イ ヨ ト

Proof.

Fix a dominating set $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subseteq [\mathbb{N}]^{\mathbb{N}}$ with size \mathfrak{d} . Constructing inductively a family $\{f_{s_{\gamma}} : \gamma < \mathfrak{d}\} \subseteq \mathbb{N}^{\mathbb{N}}$ such that the set

$$X = \{s_{\gamma} : \gamma < \mathfrak{d}\} \bigcup Fin$$

has Menger property but no Hurewicz property.

In step 0. We can choose a f_{s_0} such that the set $f_{s_0^c} \in \mathbb{N}^{\mathbb{N}}$ and

$$\{d_0\} <^{\infty} f_{s_0}, f_{s_0^c}.$$

In step $\alpha < \mathfrak{d}$. Note that $|\{d_{\beta} : \beta < \alpha\}| < \mathfrak{d}$, there exists a $f_{s_{\alpha}}$ such that $f_{s_{\alpha}^c} \in \mathbb{N}^{\mathbb{N}}$ and

$$\{d_{\beta}:\beta<\alpha\}<^{\infty}f_{s_{\alpha}},f_{s_{\alpha}^{c}}.$$

Proof.

It is not hard to see that $\{f_{s_\gamma}:\gamma<\mathfrak{d}\}$ is $\mathfrak{d}\text{-unbounded},$ so is the set $\{s_\gamma:\gamma<\mathfrak{d}\}$

Recall that the complement function $\tau: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$

$$\tau(A) = \mathbb{N} \setminus A$$

is a homeomorphism. We define the following map $\psi\colon P(\mathbb{N})\to\mathbb{N}^{\mathbb{N}}$ such that

$$\psi: s \to s^c \to f_{s^c}.$$

 ψ is a continuous function, and $\psi(X \cup Fin)$ contains a unbounded family $\{f_{s_{\gamma}^c} : \gamma < \mathfrak{d}\}.$

Thus, $X \cup Fin$ is not a Hurewicz space.

Fact

 $(X \cup Fin)^2$ is Menger.

Proof of the Fact

Proof.

Note that

 $(X \cup Fin)^2 = (X \times X) \cup (Fin \times Fin) \bigcup ((X \cup Fin) \times Fin) \bigcup (Fin \times (X \cup Fin)).$

Define $f: P(\mathbb{N}) \to P(\mathbb{N}) \times P(\mathbb{N})$. such that

$$f(x) = (x_0, x_1).$$

Where $x_0 = \{x(2n) : n < \mathbb{N}\}, x_1 = \{x(2n+1) : n < \mathbb{N}\}.$

Proof.

Then f is continuous and

$$f((X \bigoplus X) \cup Fin) = (X \times X) \cup (Fin \times Fin).$$

We need to show that

 $(X \bigoplus X) \cup Fin$ is \mathfrak{d} -concentrated on Fin.

Notice that $X \bigoplus X$ homeomorphic to $\{f_{s_{\alpha}} \bigoplus f_{s_{\beta}} : \alpha, \beta < \mathfrak{d}\}.$

we just need to show that

 $\{f_{s_{\alpha}} \bigoplus f_{s_{\beta}} : \alpha, \beta < \mathfrak{d}\}$ is \mathfrak{d} -unbounded in $\mathbb{N}^{\mathbb{N}}$.

Proof.

Let b be any element of $\mathbb{N}^{\mathbb{N}}$ and $b = b_0 \oplus b_1$.

where $b_0 = \{b(2n) : n \in \mathbb{N}\}$ and $b_1 = \{b(2n+1) : n \in \mathbb{N}\}$. It is easy to see that

 $f_{s_{\alpha}} \oplus f_{s_{\beta}} \leq^{*} b$ if and only if $f_{s_{\alpha}} \leq^{*} b_{0}$ and $f_{s_{\beta}} \leq^{*} b_{1}$.

Then we have that $\{f_{s_{\alpha}} \oplus f_{s_{\beta}} : f_{s_{\alpha}} \oplus f_{s_{\beta}} \leq^{*} b, \alpha, \beta < \mathfrak{d} \}$ $= \{f_{s_{\alpha}} : f_{s_{\alpha}} \leq^{*} b_{0}, \alpha < \mathfrak{d} \} \bigcap \{f_{s_{\beta}} : f_{s_{\alpha}} \leq^{*} b_{1}, \beta < \mathfrak{d} \}.$

Proof.

Note that

$$\begin{split} |\{f_{s_{\alpha}}:f_{s_{\alpha}}\leq^{*}b_{0},\alpha<\mathfrak{d}\}|<\mathfrak{d};\\ |\{f_{s_{\beta}}:f_{s_{\alpha}}\leq^{*}b_{1},\beta<\mathfrak{d}\}|<\mathfrak{d}\;; \end{split}$$

Thus,

$$|\{f_{s_{\alpha}} \oplus f_{s_{\beta}} : f_{s_{\alpha}} \oplus f_{s_{\beta}} \leq^* b, \alpha, \beta < \mathfrak{d}\}| < \mathfrak{d}.$$

Then we have completed the proof of the **Fact** above.

・ 同 ト ・ ヨ ト ・ ヨ

Fact

For every n > 2, $(X \bigcup Fin)^n$ satisfies Menger property.

Proof.

For each *n*, Notice that $X \times Fin \times X$ is homeomorphic to $X \times X \times Fin$. We have that $(X \cup Fin)^k = \bigcup_{1 \le k \le n} C_n^k (X^k \times Fin^{n-k})$ $= \bigcup_{1 \le k \le n} C_n^k ((X^k \times Fin^{n-k}) \cup Fin^n)$ $= \bigcup_{1 \le k \le n} C_n^k ((X^k \cup Fin^k) \times Fin^{n-k})$

It is enough to show that $X^k \cup Fin^k$ is Menger for each $1 \le k \le n$, and the proof is similar to that of the case n = 2 above.

伺下 イヨト イヨト

Proof.

Define a function

$$P(\mathbb{N}) \to (P(\mathbb{N}))^k.$$

such that

$$f(x) = \langle x(0), x(1), \cdots x(n-1) \rangle.$$

Where $x(i) = \langle x(k) : k \equiv i \mod(n) \rangle$ for each $1 \le i \le n$.

It is clearly that f is continuous. Moreover.

$$f(\bigoplus_{1 \le i \le k} X_i \cup Fin) = X^k \cup Fin^k.$$

Where $X = X_i$ for each $i \leq k$.

Proof.

Observation: $\bigoplus_{1 \le i \le k} X_i \cup Fin$ is \mathfrak{d} -concentrated on Fin.

To see this, recall that

$$\bigoplus_{1 \le i \le k} X_i \approx \{ \bigoplus_{j \in F} f_{s_j} : f_{s_j} \in X, F \in [\mathfrak{d}]^k \}.$$

Let b be any element of $\mathbb{N}^{\uparrow\mathbb{N}}$ and $b = b_0 \oplus b_1 \oplus \cdots \oplus b(n-1)$. Where

$$b_i = \{b(k) : k \equiv i \mod(n)\}.$$

It is easy to see that

$$\bigoplus_{i \in F} f_{s_i} \leq^* b$$
 if and only if $f_{s_i} \leq^* b_i$ for each $i < n$.

Proof.

Then we have that

$$\{\oplus_{j\in F}f_{s_j}:\oplus_{j\in F}f_{s_j}\leq^* b\}=\bigcap_{i\leq n-1}\{f_{s_\alpha}:f_{s_\alpha}\leq^* b(i),\alpha<\mathfrak{d}\}.$$

Note that the space X is \mathfrak{d} -unbounded, so for all $i \leq n-1$, both the cardinalities of $\{f_{s_{\alpha}} : f_{s_{\alpha}} \leq^* b(i), \alpha < \mathfrak{d}\}$ are less than \mathfrak{d} . Therefore,

$$|\{\oplus_{j\in F}f_{s_j}:\oplus_{j\in F}f_{s_j}\leq^* b, \ \oplus_{j\in F}f_{s_j}\in \bigoplus_{1\leq i\leq k}X_i\}|<\mathfrak{d}.$$

Thus, $\bigoplus_{1 \le i \le k} X_i$ is \mathfrak{d} -unbounded, and then $\bigoplus_{1 \le i \le k} X_i \bigcup Fin$ is \mathfrak{d} -concentrated on Fin as desired.

伺 ト イヨト イヨト

Definition

a semifilter on an infinite countable X is a non-empty family $\mathcal{F} \subseteq [X]^{\mathbb{N}}$ containing all almost-supersets of its elements. A *filter* is a *semifilter* closed under finite intersections.

Definition

For a filter \mathcal{F} on X, $\mathcal{B} \subseteq \mathcal{F}$ is called a *base* of \mathcal{F} if for each $F \in \mathcal{F}$, these is a $B \in \mathcal{B}$ with $B \subseteq F$. The character of a filter is the minimal cardinality of its bases.

伺 ト イヨト イヨト

How are different among the property $S_{fin}(\mathcal{O}, \mathcal{O})$, $U_{fin}(\mathcal{O}, \Gamma)$, $U_{fin}(\mathcal{O}, \Omega)$ and $S_{fin}(\Omega, \Omega)$ in the realm of filters? Recall that

Proposition (D. Chodounsky, D. Repov \check{s} , L. Zdomskky, 2014, J.S.L)

Let \mathcal{F} be a filter on \mathbb{N} . Then \mathcal{F} is Menger (Hurewicz) then for all $0 < n < \mathbb{N}$, \mathcal{F}^n is Menger (Hurewicz).

In the realm of filters,

$$U_{fin}(\mathcal{O}, \Gamma) \longrightarrow U_{fin}(\mathcal{O}, \Omega) \longleftrightarrow S_{fin}(\mathcal{O}, \mathcal{O})$$

$$\swarrow$$

$$S_{fin}(\Omega, \Omega)$$

同 ト イ ヨ ト イ ヨ ト

Lemma (R.Hernández-Gutiérrez, P. Szeptycki, 2015, Comm Math Universitatis Carolinae)

(1) b is the minimal character of a filter that is not Hurewicz.

(2) \mathfrak{d} is the minimal character of a filter that is not Menger.

Lemma (R.Hernández-Gutiérrez, P. Szeptycki, 2015, Comm Math Universitatis Carolinae)

 $(\mathfrak{b} = \mathfrak{d})$ There exist a Menger filter of character \mathfrak{d} that is not Hurewicz.

同 ト イ ヨ ト イ ヨ ト

Question (R.Hernández-Gutiérrez, P. Szeptycki, 2015, Comm Math Universitatis Carolinae)

Is there, in ZFC, a Menger filter of character \mathfrak{d} that is not Hurewicz?

A B > A B >

Given a set $X \subset 2^{\mathbb{N}}$, let \mathcal{I}_X be the ideal generated by finite union of branches $C_x = \{x | n : n \in \mathbb{N}\}$ where $x \in X$ and \mathcal{F}_X be the dual filter.

Lemma (R. Hernández-Gutiérrez, P. Szeptycki, 2015, Comm Math Universitatis Carolinae)

Let $X \subset 2^{\mathbb{N}}$. Then

(1) every finite power of X is Menger if and only if \mathcal{F}_X is Menger.

(2) every finite power of X is Hurewicz if and only if \mathcal{F}_X is Hurewicz.

伺 ト く ヨ ト く ヨ ト

Theorem (J. He, J. Yu, S. Zhang)

There exists, in ZFC, a Menger filter with character \mathfrak{d} that is not Hurewicz.

Proof.

Let X be a finite power Menger space with size ϑ that is not Hurewicz(the existence was proved in the previous paragraph).

Note that the set $\{(C_x)^c : x \in X\}$ is the filter base for \mathcal{F}_X , and $|\{(C_x)^c : x \in X\}| = \mathfrak{d}$.

By the lemma above, the filter \mathcal{F}_X meets the bill.

- 4 同 ト - 4 目 ト

Thank you!